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ABSTRACT In the context of open science, the availability of research materials is
essential for knowledge accumulation and to maximize the impact of scientific re-
search. In microbiology, microbial domain biological resource centers (mBRCs) have
long-standing experience in preserving and distributing authenticated microbial
strains and genetic materials (e.g., recombinant plasmids and DNA libraries) to sup-
port new discoveries and follow-on studies. These culture collections play a central
role in the conservation of microbial biodiversity and have expertise in cultivation,
characterization, and taxonomy of microorganisms. Information associated with pre-
served biological resources is recorded in databases and is accessible through online
catalogues. Legal expertise developed by mBRCs guarantees end users the traceabil-
ity and legality of the acquired material, notably with respect to the Nagoya Proto-
col. However, awareness of the advantages of depositing biological materials in pro-
fessional repositories remains low, and the necessity of securing strains and genetic
resources for future research must be emphasized. This review describes the unique
position of mBRCs in microbiology and molecular biology through their history, evolv-
ing roles, expertise, services, challenges, and international collaborations. It also calls
for an increased deposit of strains and genetic resources, a responsibility shared by
scientists, funding agencies, and publishers. Journal policies requesting a deposit
during submission of a manuscript represent one of the measures to make more bi-
ological materials available to the broader community, hence fully releasing their
potential and improving openness and reproducibility in scientific research.
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Open science includes a range of initiatives aimed at sharing scientific outputs, such
as data sets (open data), source codes (open source), and publications (open

access). The goal is to maximize scientific impact by making these outputs accessible to
the research community (1). This availability allows future studies, facilitates new
discoveries, and enables the verification and reproducibility of experiments and anal-
yses (2). Open science generally focuses on data, a concept which received much interest
from academia, industry, publishers, and funding agencies. This interest resulted notably
in the development of guiding principles intending to make scientific data findable,
accessible, interoperable, and reusable (FAIR) (3). In particular, these guidelines em-
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phasize the added value of reusing existing data in new concepts and new research
questions (4). Noteworthy, the FAIR concept differs slightly from open science since it
recognizes that accessibility can be restricted due to various factors, such as privacy,
security, and competitiveness (5).

In this context, it is surprising that little attention is given to “open research
materials,” although their accessibility is equally important for reproducible science and
to support future studies. In life sciences, public culture collections represent a histor-
ical example of open science, as they have a long-standing experience in the preser-
vation of living microbial strains and genetic materials and their distribution for further
scientific investigations. In addition, these collections have developed databases allow-
ing users to benefit from a wealth of data related to the biological material. This review
describes, from both historical and future perspectives, the active roles played by
culture collections to sustain research and to disseminate scientific knowledge. It also
calls for an increased deposit of biological resources in professional repositories.

EVOLVING ROLES OF CULTURE COLLECTIONS IN THEIR TRANSITION TO mBRCs

Microorganisms represent a huge biodiversity resulting from their adaptation to the
extensive variety of ecological niches in which they have evolved during the past 3.5
billion years. They are an invaluable resource for fundamental research and for appli-
cations in bioindustry, agriculture, health care, and the environment. They also provide
a range of genetic capacities that drive modern gene technologies, like recombinant
plasmids or the bacterial CRISPR/Cas system for eukaryotic genome editing. However,
contrary to common belief, this biodiversity is vulnerable to modifications and even
extinction, and its preservation is therefore crucial more than ever. Some microorgan-
isms are indeed restricted to particular environments or biogeographic regions and are
threatened with extinction if their habitat is altered or destroyed (6). Many microbes
live in intimate association with other organisms, and species-specific microbial sym-
bionts can become extinct along with their host (6). At the level of the human body, the
diversity of the gut microbiota is decreasing as a result of antimicrobial drug usage,
changes in diet, agricultural practices, and sanitation (7, 8). This intestinal dysbiosis is
suspected to play a role in health issues such as obesity, inflammatory bowel disease,
asthma, depression, and neurodegenerative diseases (9, 10). Even in the agrifood
industry, biodiversity is declining, notably by the uniform utilization of starters in food
fermentation (11). From an evolutionary perspective, the analysis of bacterial extinction
rates based on time-calibrated bacterial phylogenies has estimated that most bacterial
lineages ever to have inhabited the Earth are extinct (12). These examples underline our
current misconceptions about the lack of threat to microbial diversity by anthropogenic
pressures or environmental changes (13).

For research and applications in microbiology and molecular biology, the accessi-
bility and valorization of living ex situ microbial strains and related genetic materials
(e.g., recombinant plasmids and DNA libraries) through their long-term preservation
and distribution by culture collections are indispensable. The Organisation for Eco-
nomic Cooperation and Development (OECD) already recognized the role of culture
collections in underpinning the future of life sciences and biotechnologies (14). The
OECD emphasized that the sustainable access to biological resources requires profes-
sional repositories working under certified and/or accredited quality systems. Public
culture collections that maintain a recognized quality management system were
awarded the status of being a biological resource center (BRC). Among them, microbial
domain BRCs (mBRCs) maintain and provide well-characterized and authenticated
strains of microorganisms, as well as associated genetic materials and data (15).
Specifically, mBRCs follow the best practice guidelines of the OECD to preserve bio-
logical resources. These guidelines include the validation of the taxonomy and prop-
erties of the preserved material, as well as quality controls to verify their viability, purity,
and authenticity (16, 17). Moreover, at least two different preservation methods are
used, including one long-term preservation technique, such as freeze-drying or cryo-
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preservation. These methods require specific equipment but ensure the best genetic
stability of the material.

One role of the culture collections is indeed to limit the extent of genomic evolution
of the maintained biological resources as much as possible, thanks to their preservation
in an inactive state. In this regard, the long-term evolution experiment, started in 1988
in the laboratory of Richard E. Lenski, revealed that 12 Escherichia coli populations
inoculated from a single ancestral clone and cultivated under identical culture condi-
tions accumulated mutations to adapt to their environment and showed an increase in
fitness that was rapid at the start and slowed down over time (18). The mutations were
unique to each population, though sometimes affecting the same genes. Cells larger
than the ancestor were also observed (19). In certain microorganisms, genomic changes
can also be accelerated by lateral gene transfer. These genetic modifications also
explain that strains with the same identifier but kept in different laboratories for many
decades can become genomically different. The Pseudomonas aeruginosa strain PAO1,
for instance, is one of the most commonly used research strains and is distributed
worldwide since its isolation in 1954. Analysis of different representatives of this strain
showed several genetic and phenotypic variations between settings, including inver-
sions, duplications, and deletions of genomic regions, single-nucleotide substitutions,
virulence capacities, and profiles of secreted molecular products (20–22). This resulted
in diversity among sublines stored and handled in different laboratories and precluded
the comparison and reproducibility of studies. Long-term preservation methods used
by mBRCs intend to limit this microevolution. However, the extent of genomic variation
of a same strain between collections or within a given mBRC through time cannot be
excluded and needs to be evaluated.

The distribution of biological resources is essential in various domains, such as
education and quality assurance (e.g., reference strains), but even more important to
support basic and applied scientific research in life sciences. The access to biological
materials in mBRCs indeed has an impact on knowledge accumulation by expanding
follow-on studies, as demonstrated by the boost in citations of articles associated with
strains after their deposit in public culture collections (23). Furthermore, it is important
to secure biological materials for future utilizations that currently cannot be anticipated
(24). On the one hand, new needs or challenges (e.g., biofuels, bioremediation, antibi-
otics, and genetic engineering) can be covered by properties of previously isolated
microbes, notably through the screening of microbial collections. On the other hand,
new technologies can reveal, in preserved biological materials, useful traits that were
formerly hidden due to a lack of appropriate tools (e.g., high-throughput sequencing
and omics-based approaches).

The contribution of mBRCs in the protection of intellectual property linked to
biological resources having economic value or used in commercial applications is
another way of making scientific outputs accessible. In total, 112 out of the 769 culture
collections registered in the World Federation of Culture Collections (WFCC) obtained
the status of international depositary authority according to the Budapest Treaty
(https://www.wipo.int/treaties/en/registration/budapest). They offer the deposit of mi-
crobial strains, cell lines, or genetic materials for the purpose of a patent procedure,
with this step being required if an invention involves a biological resource or its
utilization.

Finally, mBRCs evolved into being multiservice centers (25) by providing training,
consultancy, safe deposits, and expertise in various domains, such as the isolation,
identification, and analysis of microorganisms, biosafety, biosecurity, or legal aspects of
resource exchanges (see Accessibility and Utilization of Microbial Strains: the Nagoya
Protocol on Access and Benefit Sharing, below).

EXPERTISE IN MICROBIAL TAXONOMY, CULTIVATION, AND ANNOTATION

Species concepts in microbiology are more complex than in animals or plants due
to high mutation rates and high intraspecific genetic variations encountered in micro-
organisms (24). Historically, microorganisms were described and delimited according to
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their phenotypic features. However, molecular phylogenies based on gene or whole-
genome sequences revealed a higher species diversity and the evolutionary relation-
ships between taxa. This resulted in important revisions of microbial taxonomies with
the description of new taxa and nomenclature changes. A robust taxonomic framework
is much more than “putting a name.” It allows the identification of isolates and the
detection of new species. Microbial taxonomy represents a key activity of mBRCs which,
by characterizing microbiological materials, are on the front line to propose new
taxonomies. mBRCs also support studies on microbial systematics and taxonomy by
distributing strains or their DNA. In particular, they are able to provide standardized and
high-quality genomic DNA for whole-genome sequencing, hence supporting in silico
taxonomic works (26). Moreover, geographical, ecological, and temporal distributions
of a species can be assessed by exploring the origins of their representatives in the
different collections. Similarly, population dynamics can be analyzed by genotyping
strains of a given species archived in one or several collections. As an example, the
analysis of 93 Bacillus anthracis strains preserved by the Kazakhstan National Culture
Collection and covering a 53-year period revealed the epidemiology of the genetic
clusters circulating in the country and responsible for historical anthrax outbreaks (27).

Another important element covered by the mBRCs is the deposit, for each described
species, of a type strain, considered to be a reference point for the classification and
identification of isolates. According to the International Code of Nomenclature of
Prokaryotes, the description of new species of Bacteria or Archaea requires the deposit
of a living type strain in two members of the WFCC, located in different countries (28).
For the other microorganisms, the International Code of Nomenclature of algae, fungi,
and plants stipulates that type specimens must be preserved permanently and recom-
mends depositing living cultures in at least two institutional culture collections (29).
mBRCs preserving plasmids focus on the annotation of the biological material, which is
essential to spot the resources via common identifiers such as gene identifiers (IDs),
EMBL/GenBank accession numbers, gene symbols, and PubMed IDs. Also, searches on
Gene Ontology terms, which are structured, controlled vocabularies and classifications
covering key domains of molecular and cell biology (30), as well as BLAST searches, are
important to find sets of plasmids containing defined sequence strings or carrying
genes belonging to specific research domains.

Culture-independent approaches have revealed the huge gap between the existing
microbial diversity and its cultivated representatives (31). For bacteria and archaea,
about 15,000 species have been published so far, but they represent only 0.001 to 0.1%
of the estimated global species number (32). Moreover, operational taxonomic units
detected by high-throughput sequencing are recognized at a rate that exceeds almost
100 times the rate of species description (32). In mycology, the number of described
fungal species is currently around 120,000, but estimations range between 500,000 and
10 million species (33). In the case of protists, the number of described species reaches
about 74,400, while the predicted species richness ranges from 0.15 and 1.66 million
(34, 35). However, if the information obtained with omics-based approaches can be
fruitfully exploited to design better isolation strategies (36), the physiology and met-
abolic capabilities can only be verified in studies of cultivated organisms (11, 31). In
particular, the fraction of genes that can be annotated for a given genome is positively
correlated with the proportion of cultivated representatives in the corresponding
phylum (37). A recent proposal to describe species based solely on the detection of new
DNA sequences in environmental samples (32) is therefore disputable, since it prevents
phenotypic studies of the species. Cultivation of microorganisms is important to exploit
their potential, and improvement in this field notably requires better simulations of
natural growth conditions, adaptations of culture media, and technical advances (31).
An example is the development of high-throughput culturomics approaches for the
human gut microbiome (38, 39). Nevertheless, such necessary but fastidious develop-
ments would not make sense without the preservation of the cultures. To this end,
mBRCs developed and maintain the infrastructure and the necessary expertise for the
conservation and cultivation of the microorganisms in which they are specialized.

Minireview Applied and Environmental Microbiology

November 2019 Volume 85 Issue 21 e01444-19 aem.asm.org 4

https://aem.asm.org


DATA NETWORKS

Biological materials entering mBRCs receive a unique identifier (i.e., accession
number), consisting of the collection acronym and a number, which are registered in a
database together with metadata like the provenance (e.g., substrate, date, location,
depositor, and parental clones), history, phenotypic characteristics (e.g., morphology,
physiology, biochemistry, and resistance to antimicrobial drugs), genetic information
(e.g., genotype, nucleotide or genome sequences, and plasmid features), possible
applications, bibliography, and growth conditions. Depending on the mBRC, all or part
of these data is available and searchable through their online catalogues and websites.
Some collections also valorized their databases by offering online tools for specific
purposes. For instance, the Westerdijk Fungal Biodiversity Institute provides an
online polyphasic identification tool for the identification of yeasts based on their
morphology, physiology, sexuality, and DNA sequences (http://www.westerdijkinstitute
.nl/Collections/BiolomicsID.aspx?IdentScenario�Yeast2011ID). A Web application was
developed in collaboration with the BCCM/IHEM fungal collection for the identification
of medical and veterinary mold isolates using matrix-assisted laser desorption ioniza-
tion–time of flight (MALDI-TOF) mass spectrometry (40, 41). The German Collection of
Microorganisms and Cell Cultures (DSMZ) elaborated a range of publicly available
online tools for prokaryotic research, including genome-based species delineation or
up-to-date bacterial nomenclature listings (https://www.dsmz.de/services/online-tools).
Moreover, since the development of technologies such as DNA sequencing, microbi-
ology also became a data science, and culture collections have increasing responsibility
in (big) data and information storage.

Historically, the computerization of metadata stimulated European culture collec-
tions to launch networking initiatives in order to make their databases interoperable.
The Microbial Information Network Europe (MINE) project was performed in the late
1980s by major European culture collections in order to adopt a uniform format for the
computer storage and retrieval of strain data (42, 43). A key element was the definition
of a common minimal data set comprising a list of essential characteristics (42, 43). This
facilitated the exchange of data between collections and the production of integrated
catalogues. The Common Access to Biological Resources and Information (CABRI)
project elaborated the first common catalogue (http://www.cabri.org/). CABRI is a
network service for the distribution of more than 150,000 biological resources and
related data from 28 European collections, representing about half of the total deposits
in Europe (44). Linking information from culture collections to bioinformatic and
bibliographic databases is also essential to enhance research. The European BRCs
Network (EBRCN) project was therefore conducted in the early 2000s to develop
cross-references between the CABRI catalogue and other databases, such as EMBL or
Medline (44). Later on, the StrainInfo initiative was developed as a virtual, integrated
online catalogue of the microorganisms preserved by mBRCs (45). These good practices
in data resource management were also part of the Microbial Resource Research
Infrastructure (MIRRI) preparatory phase project. MIRRI aimed at coordinating mBRCs in
a multidisciplinary pan-European platform, notably by developing further the interop-
erability and accessibility of resources and data (46–48). MIRRI will be further developed
into a pan-European Research Infrastructure with the status of European Research
Infrastructure Consortium (ERIC).

Based upon these initiatives and the OECD best practice guidelines for BRCs, the
WFCC developed similar worldwide initiatives through its World Data Centre for
Microorganisms (WDCM) (http://www.wdcm.org/). The WDCM was created in 1966 and
initially aimed at providing information on the WFCC member collections (e.g., scope,
provided services, scientific interests, and type of organization) (49). In 2012, the WDCM
launched the Global Catalogue of Microorganisms (GCM) to gather collection cata-
logues and biological resource-related information (50). The GCM currently includes
more than 420,000 records from 126 collections in 47 countries and regions. The GCM
also contains a data mining tool called the Analyser of Bioresource Citation that extracts
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biological material-related publications, patents, nucleotide sequences, and genome
information from public sources (e.g., PubMed, NCBI, WIPO, and Genome Online) (51).
Similarly, the NCBI established its BioCollections Database that aims at linking the
sequence data deposited in GenBank with the culture collection that holds the corre-
sponding strain (52). It is thus possible to provide the URL of a catalogue page to link
the sequence entries to the strain of the relevant collection, hence simplifying the
search for microbial resources on the basis of their deposited sequence data.

New challenges in database accessibility and interoperability are anticipated for the
future. Surveys performed in the frame of the MIRRI project indeed revealed that users
of collections request improvement of the quality and diversity of possible searches in
databases. Users also look for the possibility to make these searches simultaneously in
catalogues of different collections (53). These demands will require the collections to
continue investing in common data management standards and information systems.

ACCESSIBILITY AND UTILIZATION OF MICROBIAL STRAINS: THE NAGOYA
PROTOCOL ON ACCESS AND BENEFIT SHARING

The basic principle of the Convention on Biological Diversity (CBD) (54), signed in
1992, is to recognize the sovereignty of countries over their biological resources (and
associated genetic resources), hence counteracting one-sided exploitation or biopiracy.
The CBD has three main objectives, as follows: (i) conservation of biological diversity, (ii)
sustainable use of biological resources, and (iii) fair and equitable sharing of benefits
arising from the utilization of genetic resources. The Nagoya Protocol (NP) was adopted
in 2010 and came into force in October 2014 mainly to address this third objective and
to guide the implementation of access and benefit sharing (ABS) into national laws (55).
In practice, signatory countries are obliged to ensure the legal use of foreign resources
and the benefit sharing within their jurisdiction. It is notably based on prior informed
consent (PIC) and mutually agreed terms (MAT), both of these concepts being intro-
duced by the CBD. Users of a biological resource are indeed required to obtain a PIC
issued by the competent national authority (CNA) of the country of origin and explain-
ing the particular purpose of the resource. They also need to settle MAT with the
providing country, including details on the sharing of benefits (monetary and other)
arising from its utilization. Once a permit to collect the material is granted, an
internationally recognized certificate of compliance (IRCC) is issued by the CNA to
facilitate its transfer to third parties for further use.

The application of the NP on microorganisms has been questioned by several
authors, as it would threaten basic research in microbiology (56–58). Overrestrictive
access laws in providing countries could indeed reduce exchanges of biological re-
sources and decrease scientific activities in different fields, such as taxonomy, ecology,
and biodiversity. In recipient countries, complex regulations and unclear definitions in
legal documents could have the same effect. Moreover, the varied temporal scope and
laws across countries further complicate the situation (58). In this context, culture
collections may experience a decrease in the deposit of biological materials by re-
searchers due to these legal complexities (59). However, the available information on
relevant national legislations of each country that signed the CBD can be found in the
ABS Clearing House (ABSCH) database (https://absch.cbd.int/). This database also pub-
lishes IRCCs and provides contact details of the ABS national focal points that can be
consulted for more specific questions (60).

Additionally, mBRCs, through their legal expertise, can guide depositors and help
researchers access microbial materials lawfully. Any deposit in public collections is
indeed verified by curators for its compliance with the NP, and, if applicable, required
documents (e.g., PIC, MAT, and IRCC) are requested to accompany the biological
material. A material deposit agreement (MDA) including the legal terms of the deposit
is also signed between the depositor and the mBRC. For their distribution, biological
resources are supplied by mBRCs with a material transfer agreement (MTA) describing
the conditions and limitations of their utilization (60). Combined, all these legal
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procedures and documents ensure traceable and legitimate exchanges of microbial
and genetic resources.

For the deposit and distribution of biological resources, the transport to or from a
collection can be performed in different forms depending on the type of material.
Depositors can provide strains to collections in any viable form, including active
cultures in test tubes or petri dishes, in freeze-dried form, or as a suspension in
microtubes. Similarly, genetic materials (e.g., genomic DNA and plasmids) can be
provided in suspension or lyophilized, as well as precipitated or evaporated. Shipment
in a frozen form is also an option and is even mandatory for cell lines and hybridomas.
This requires the use of dry ice, resulting in additional safety measures and higher
shipment costs. Collections generally distribute biological material in freeze-dried form
or as active cultures. In addition, the shipment of microorganisms that are harmful for
humans, animals, or plants must comply with the dangerous goods regulations, such as
those defined by the International Air Transport Association (IATA) or the European
agreement concerning the international carriage of dangerous goods by road (ADR).
These regulations include multiple layers of packaging to avoid breakage and spillage
during transport, necessary labels on the outer package, and additional accompanying
documents. For the transportation itself, the use of a professional courier with experi-
ence in the shipment of dangerous goods is recommended. Of note, shipments to
certain countries can be restricted by specific national laws. All of these transportation
regulations increase the safety and traceability when shipping biological resources.

Several coordinated initiatives were conducted by mBRCs to develop harmonized
best practices for ABS. The European Culture Collections Organisation (ECCO) devel-
oped a harmonized “core-MTA” that raised awareness on ABS (61). The Microorganisms
Sustainable use and Access regulation International Code of Conduct (MOSAICC)
project started in 1997 and was the first effort to support the implementation of the
CBD for microorganisms. It provided model clauses for legal documents, such as PIC
and MAT, while combining the need for easy transfers of biological resources with the
necessity to monitor these transfers (16). In 2012, the TRansparent User-friendly System
of Transfer (TRUST) initiative revisited MOSAICC to answer efficiently the NP technical
challenges. Its goal was to further implement the NP in the scientific, technical, and
administrative activities of mBRCs (62). In the future, the European Union plans to
establish a registry of European mBRCs that can demonstrate full compliance with the
NP and the European regulation 511/2014 (73) on compliance measure for users from
the NP. The advantage of accessing biological resources from mBRCs with the status of
“registered collection” is that users will be considered as having exercised due diligence
regarding ABS and thus would benefit from less administrative workload to access
resources in legal certainty (63, 64).

ENHANCING THE DEPOSIT OF MICROBIAL STRAINS AND GENETIC RESOURCES

Networking among mBRCs is essential, not only for data sharing but also for the
distribution and exchange of microorganisms and genetic resources. Indeed, the
largest public culture collection holds less than 2% of the total strains gathered by
the WFCC members (65). This illustrates the high level of interdependency and the
necessary collaboration between repositories. Globalization of efforts through organi-
zations such as the WFCC, ECCO, U.S. Culture Collection Network (USCCN), and Asian
Consortium for the Conservation and Sustainable Use of Microbial Resources (ACM)
therefore facilitates the access to a wider range of resources, expertise and services. This
was also the purpose of international initiatives such as the European Consortium of
Microbial Resources Centres (EMbaRC) (http://www.embarc.eu/ and https://cordis.europa
.eu/project/rcn/90998/reporting/en) and Global BRC Network (GBRCN) projects (66).
Besides these networks, mBRCs are connected to academia, industry, governmental,
and higher education institutions. They are also linked to providers and users of
microbial materials, originating from both the public and private sectors and having
diverse profiles. Based on this unique position, mBRCs are considered knowledge hubs
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in life sciences, supporting innovation by offering access to quality-controlled micro-
organisms and genetic resources (24).

As with open data, the responsibility to make biological materials available for future
research is shared by researchers, funding agencies, and publishers (67). Governmental
funding policies should not focus solely on data sharing to valorize important public
research investments (68). They should also consider the access to physical outputs and
require the deposit of microbial strains and genetic resources obtained and/or studied
during financed projects. Regarding publications, most journal policies encourage
authors to make biological materials used in publications available to the scientific
community. However, the majority of strains appearing in articles are not deposited in
public culture collections. In 2008, a survey that screened 835 articles from eight
European microbiology journals revealed that less than 1% of the strains were depos-
ited (69). Moreover, in an anonymous request to obtain strains from 100 randomly
selected authors, only 5% confirmed deposit, and 19% indicated their willingness to
deposit, while 61% did not respond at all, and 15% responded that the material was
dead or unavailable (69). This illustrates the lack of awareness by many microbiologists
of the importance and advantages of depositing their biological material in order to
make it available to the broader community, hence fully releasing its potential.

However, considering the current limited capacities and funding of mBRCs, it might
be impossible to preserve all biological resources appearing in published articles in a
quality-assured manner. Consequently, the concept of “key strains” was introduced to
prioritize strains for acquisition by mBRCs (26, 68). For prokaryotes, the selection criteria
include phylogenetic, metabolic, and genomic uniqueness, strains with a whole-
genome sequence, additional strains of species for which only the type strain is
available, strains associated with significant plant or animal diseases, and strains from
unexplored environments. In mycology and algology, the criteria also cover type strains
of novel taxa given that fungi and algae may be validly described using dried herbar-
ium specimens as types. For phylogenetically highly diverse but understudied groups
of protists, such criteria need to be developed and may need to be adapted to the
particularities of each group’s biology. Nevertheless, a survey on author opinions
regarding the deposit of key strains revealed that most of them agree that journal
guidelines should ask for their deposit in culture collections for further research (70).
Editors and publishers should therefore require authors to deposit key strains in mBRCs
before submission or acceptance of an article. This could be linked to transparency and
openness promotion (TOP) guidelines for journals formulated by the TOP committee
(71). These guidelines combine eight standards, including research material transpar-
ency. Three levels of stringency are proposed, out of which the first two are applicable
to the deposit of microorganisms. The first one stipulates that the article has to state
whether materials are available and, if so, where to access them. According to the
second level, materials must be deposited to a trusted repository (71). The adoption of
such guidelines for microbial key strains would be a step forward toward greater
openness in microbial research.

Another important element to ensure the conservation of the microbial diversity is
the transfer of vulnerable research collections to mBRCs. Indeed, many laboratories
assembled valuable collections in the frame of their activities or research projects.
However, these collections are at risk of loss following retirement or departure of the
principal investigator, lack of funding, or termination of research programs. The incor-
poration of all or part of these collections into mBRCs is therefore necessary for their
long-term preservation and availability, with large mBRCs generally receiving better
financial support through long-term public funding, project grants, and end-user fees
(59, 72). However, maintaining and building a culture collection with high quality
standards have an enormous cost, and mBRCs are regularly asked to adapt their
business plan and/or to diversify their activities in order to ensure sustainable financing
(59, 72). This strategy requires collections’ staff to divert their efforts away from core
operations, while its efficiency remains to be proven. It is therefore essential to
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highlight the uniqueness of the biological patrimony preserved in collections and the
support it should receive.

CONCLUSION

The FAIR principle described for data sharing can be applied to microbiological
resources provided that they are preserved in mBRCs. Indeed, each deposit is findable
through the allocation of a unique accession number and is accessible via mBRCs online
catalogues and distribution. Living materials are not interoperable per se, but associ-
ated data are recorded in databases that are increasingly interoperable following
international efforts, such as MIRRI and the WDCM. Thanks to the expertise of mBRCs,
microbiological resources are maintained viably for long periods and are authenticated,
well characterized, NP compliant, and quality controlled. They are therefore reusable for
future studies and to support cumulative knowledge in life sciences. Similar to FAIR
data, the concept of FAIR microorganisms and genetic materials recognizes that the
access to certain resources can be restricted for security or commercialization reasons.
However, an increase in deposits is needed and requires the awareness and implication
of all stakeholders, including researchers, funding agencies, and publishers.
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